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d(sin O)=0.352/4R=O.142/La. (18) 

This is close to the same peak shift obtained previously 
by Warren (1941). 

The results obtained here are rigorous within the 
conditions assumed. We have postulated disk shaped 
graphite layers all of one size, with no allowance for a 
size distribution. The results are applicable only for 
graphite layers which are large enough to give well 
developed hk reflections for which it is possible to 
make a breadth measurement which is not influenced 
by neighboring peaks. It is also postulated that the 
layers have random orientation about the layer normal, 
with no modulations in the peak due to neighboring 
layers assuming the graphite orientation. 

For samples in which the layers are very small, it is 
necessary to develop the diffraction pattern from the 
general Debye scattering equation. The problem has 
been treated in this way by Diamond (1957) and War- 
ren & Bodenstein (1965). Both of these treatments fol- 
low Diamond's convention, which in terms of areas 
of disks, amounts to defining an La = 1.9R. This differs 
from the average dimension La=(~z/2)R used in this 
paper. The difference is about 17Yo, and it must be 

kept in mind in comparing results from the two treat- 
ments. 

This work was done in part at the Computation 
Center at Massachusetts Institute of Technology, Cam- 
bridge. We are indebted to Mr F.A. Heckman of Cabot 
Corporation for discussions which suggested the need 
for a more rigorous treatment of the shape of the hk 
reflections. We are also indebted to Professor F.B. 
Hildebrand of the M.I.T. Mathematics Department, 
who pointed out the use of the Struve function in this 
treatment. The contribution by one of us (P.B.) has 
been sponsored by the South African Atomic Energy 
Board. 
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In an ordinary least-squares analysis of gas electron diffraction, the standard deviation for the most 
probable value of a parameter for a molecule depends on the interval of measurements As on a micro- 
photometer recording, that is, on the number of observed points on an intensity curve. 

It is shown that a reasonable estimate of the standard deviation of a parameter can be obtained by 
taking into account the effect of 'correlation' among the points of observations. A general method and 
its simplified form for dealing with the correlation are developed by introducing off-diagonal elements 
into the weight matrix used in the least-squares fit of the observed values. The simplified method is ap- 
plied, as an example, to the electron-diffraction data of silicon tetrachloride, and it is shown that the 
standard deviation of the most probable value estimated by using an infinite number of observations 
does not approach zero. At the same time, it is shown that when a diagonal weight matrix is used for 
simplicity there is an optimum interval for measurements in order to get a correct standard deviation. 
The optimum interval in the example given was about As= 7r/10. 

Introduction 

In a usual method of least squares, the standard de- 
viation for the most probable value is approximately 
proportional to the inverse of the square root of the 
number of observed points used in the calculation. 
Since an arbitrary number of points can be chosen on 
a continuous curve, such as the microphotometer trace 

obtained by experiments of gas electron diffraction, the 
standard deviation for a parameter estimated by the 
least-squares analysis can be made unlimitedly small 
if the number of observations is infinitely increased. 
Such an argument, however, is based on a wrong 
assumption that all observed points remain mutually 
independent even when the interval of measurements 
becomes small. It would thus be desirable to have a 
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formulation taking account of the correlation among 
the observations. The importance of this kind of consid- 
eration has often been overlooked, except in a discussion 
by Bastiansen, Hedberg & Hedberg (1957). 

There are two ways through which correlation is in- 
troduced into the observations. It may come in directly 
from the process of the measurement; it may also be 
introduced through a process of transformation of the 
observations, such as Fourier transformation. 

It was pointed out in an earlier paper (Merino, 
Kuchitsu & Murata, 1965) that the correlations which 
are brought into indirect observations through a trans- 
formation of the measured quantities (direct obser- 
vations) can be treated by introducing off-diagonal 
terms into the weight matrix and by minimizing the 
weighted squared sum of the residuals for the indirect 
observations. On the other hand, the points which are 
closely located on an intensity curve of gas electron 
diffraction are not mutually independent in any ex- 
periment. For example, the movement of a pen in a 
recorder has a finite time constant, and in fact it has 
been found in the least-squares analysis that many of 
the residuals of the observed values have the same sign 
as those of their neighboring points. In the present 
paper, the correlation among the direct observations 
will be discussed by introducing off-diagonal terms 
into the weight matrix for the least-squares calculation. 
The primary object is to estimate a reasonable interval 
of measurements when a diagonal weight matrix can 
be used in place of the non-diagonal weight matrix. 

General theory 

Error function 
As was described in the earlier paper (Merino, 

Kuchitsu & Murata,  1965), if the correlations come in 
only through a transformation from direct obser- 
vations, the most probable values can be obtained by 
applying the usual condition of least squares to the 
indirect observations: 

V*PV --> minimum (1) 

where V denotes the residuals referred to the resulting 
indirect observations. P is a non-diagonal weight mat- 
rix for the indirect observations and is given by 

P = (GPo-IG*) -~ (2) 

where G is a matrix whose elements are the coefficients 
of the linear transformation from direct observations 
to indirect ones, and P0 is a weight matrix for the 
original direct observations. If a point of the direct 
observation contributes to two or more points in the 
indirect observations, the matrix P has off-diagonal 
elements even if the matrix P0 is diagonal. 

The consideration of the above result seems to sug- 
gest a method for treating correlations among the 
direct observations. One may assume that a condition 
similar to equation (1) can be used for obtaining the 
most probable value even in the case where the direct 

observations have correlations due to some unavoid- 
able sources in the process of measurements. As a 
natural extension of the ordinary Gaussian distri- 
bution of errors, the error function for this case may be 
defined by a multivariate normal distribution, as fol- 
lows, 

F (  VI V2 . . .  Vn) = 
(2rco'z)-n/2lP I~ exp ( - V * P V / 2 a 2 ) ,  (3) 

where P is a positive definite matrix and n is the num- 
ber of observations. 

Weight matrix 

The weight matrix P can be obtained as follows. 
The expectation of the product of residuals is defined as 

(v vj) = 

i oo V~ V~F(Va V2 Vn) dVldV2 dVn, (4) 
o g g  O Q Q  

- - o o  

where F ( V I V z . . .  Vn) is the error function given by 
equation (3). The integration can be performed by the 
diagonalization of the weight matrix P. Since P is 
supposed to be symmetric, the matrix P can be diago- 
nalized by a unitary matrix U, that is 

U*PU -- Q (5) 

where Q is a diagonal matrix. Putting 

W = U * V  (6) 
it is shown that 

V*PV= Z QiWi z (7) 
i 

where Qi is not zero, since P is defined to be non- 
singular. Thus equation (4) may be simplified as 

(VIV,) = 1_ ~ ~XUi~U,  lWkWz(2naz)-n/2lQ]~ 
oo 1 

exp ( -  £' QiW~/2az)dWldWz . . .  dWn 
i 

= a 2 £" (1/Qlc) Ui~Ujx 
k 

= o ' 2 ( p - 1 ) i j  . ( 8 )  

If the matrix (ViVj) is denoted as D, it is propor- 
tional to the inverse matrix of e by equation (8), and, 
therefore, it follows that 

P=aZD -1 . (9) 

The matrix D can be obtained in an empirical way 
by using many observations at each point, and the 
weight matrix P can be calculated by equation (9), 
where the coefficient o "2 may be taken arbitrarily be- 
cause a z is cancelled in the normal equation and in 
the standard deviation for the parameter. Since the 
residual V~ actually depends on the weight function, 
P may be made self-consistent by iteration, if necessary. 
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Least-squares analysis 
The condition c~ 

c3X (V*PV) = 0 (10) 

gives the normal equation 

A ' P A X  = A*PM , (11) 

where A is the matrix whose element is given by the 
first derivative of an observed quantity with respect 
to a parameter, and X denotes the difference between 
the most probable value and the estimated value for 
parameters, and M the difference between the observed 
and the calculated values. In the process of the itera- 
tion of the least-squares calculation the M2 in the 
second step are equal to the residuals V~ in the first 
step. On the other hand, the relation of V*PV= 
M * P M - X * A * P A X  is obtained from equation (11) by 
M = A X + V .  Thus, the weighted squared-sum of the 
residuals in the second step, V~PV:, reduces to 
V~'PV1-X~A~PA2X2. Since X ' A ' P A X  is positive, 
V*PV decreases after applying one cycle. Therefore, 
equation (11) is equivalent to equation (1). 

The variance or the convariance for the estimate is 
given by the same equation as in the case of the diag- 
onal weight matrix, 

0-/21 = (B-1)~j0-2 (12) 

where B=A*PA,  0-2=V*PV/(n-m) ,  and m is the num- 
ber of parameters. 

A simplified non-diagonal weight matrix 

The weight matrix can be obtained empirically by 
equation (9) when the correlation among observations 
is taken into account. The process to be followed for 
this purpose, however, involves considerable practical 
inconvenience, since the determination of the D matrix 
calls for a large number of measurements on many 
photographic plates and a tedious processing of the 
data by the use of an electronic computer. Thus it 
would be more convenient if the correlation could be 
dealt with by using a simplified weight matrix. 

Generally speaking, all off-diagonal terms do not 
vanish. However, if the intervals of measurements are 
large, the correlations among the observations may 
become small. Therefore, it is likely that the off-diag- 
onal elements decrease gradually as they depart from 
the diagonal. Then, it seems to be reasonable to assume 
th- weight matrix of the following form, 

p =  

h - p  0 0 
- p  h - p  0 

0 - p  h - p  
0 O - p  h 

0 - p  h - p  
0 O - p  h 

(13) 

. . . . . . . . . . .  . o 

t . . . . . . . . . . .  . , 

The diagonal elements are taken to be all equal to h 
and the next off-diagonal elements to - p ,  whereas 
other off-diagonal elements are all equal to zero. 

The expectation value of the product of residuals, 
Di, i+k, is approximately proportional to (p]h) ~, and 
hence, the correlations gradually decrease as k in- 
creases*. This means that the matrix (13), which has 
non-vanishing elements only among the nearest neigh- 
bors, is a useful form to deal with the correlations which 
may practically occur. 

The matrix is easily diagonalized in an explicit form, 
and the eigenvalues and eigenvectors are given by 

7"C 
Qj=h-2pcoS- - -n+~ j , "  j =  1,2, . . .  n, (14) 

s i n - - -  k = l  2, . . n .  (15) 
n-t- ' " 

By equations (8), (14) and (15), we have 

D~j = 0-2 X ~ sin 7c zc k n + l  - ~ -  ik sin - - -  n+-~ J k 

h - 2 p c o s - - -  k -1 . t  
n + ] -  

Putting 

and 

(16) 

1 ~ D u = b i ,  (17) 
n i = 1  

1 n - -  I 

fl = Z½(Di,I+a + D~,¢-1) = Df,l+l , (18) 
n- -2  i=2 

the trace of the matrix D is then given by 

n ~ = 0 -2 h - 2p cos - -  k 
n +  

[ n + l  h ] (h>12pl, n>) l ) (19)  
_ 0-z (h2-4p2)  ÷ h 2 - 4 p  2 . 

Therefore, the averaged diagonal element is approx- 
imated by 0~= 0-2(h2- 4p2) -~ . (20) 

On the other hand, the average of the off-diagonal 
elements on the first nearest neighbors of the diagonal 

is given by fl~_ (ho~- az)/2p. (21) 

The ratio of the off-diagonal term to the diagonal term 
of the weight matrix is given by 

p/h=o~fl/(o~2 + fl2) . (22) 

* D~,i+~ is proportional to {(h-V]12--ap2)/2p} k and for 
Ip/hl < 0"4, it can be approximated as (p/h)'L 

t If the integration is performed at this step, equation (16) 
is given by 

~72 
Dt,~+~ -- ~/~£Z_~p2 Ag(1- A21) 

(72 
D i , i - t :  . . . .  A~(I- A Z ( ~ - k ) )  , 

~ / h  2 - 4 p2 

where k > 0 and A = (h-  VhZZ-4p2)/2p. Then 0~ and fl are easily 
calculated from these equations and are given in the same form 
as in equations (20) and (21). 
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Equation (14) leads to the condition 

Ip/hl < ½, (23) 

because all eigenvalues of a positive definite matrix are 
positive. Thus the weight matrix obtained by apply- 
ing equation (22) is positive definite. 

The weight matrix of the simplified form can easily 
be obtained by the following steps. (a) The most prob- 
able values of parameters are estimated from a molec- 
ular intensity curve by use of the usual method of least 
squares. (b) The residual of the observation for each 
q-value, V~, is obtained by taking the difference be- 
tween the observed and calculated values of qM(q). 
(c) The averaged diagonal elements and the averaged 
off-diagonal elements of the D matrix, e and fl respect- 
ively, are calculated by using equations (17) and (18) 
respectively. This procedure, which is based on the as- 
sumption that all points on qM(q) have the same re- 
liability, seems to be superior to the laborious direct 
determination of each element of D, because e and fl 
can easily be obtained from one set of qM(q). (d) The 
simplified weight matrix is given by equation (22) in 
terms of cc and fl obtained above; -p/h may be taken 
equal to the off-diagonal element of the weight matrix 
(13) whose diagonal elements are taken as unity. As 
described in the preceding section, the diagonal element 
of the weight matrix can be taken arbitrarily. 

In order to visualize the practical meaning of the 
correlations in the analysis of gas electron diffraction 
data, the process described above is applied to the 
analysis of the molecular intensity curve for silicon 
tetrachloride. The observed values were obtained by 
the method described in our previous paper (Morino 
& Murata, 1965). The points of observations were taken 
at an interval Aq=0.2 over the range from q= 17-4 to 
q = 96.6. Six parameters, the atomic distances, the mean 
amplitudes and the indices of resolution for two kinds 
of atom pairs, Si-C1 and CI-C1, were taken in the least- 
squares analysis. Many of the residuals obtained in the 
least-squares fit of the molecular intensity have the 
same sign as those of their close neighbors; the situation 
is illustrated in Fig. 1 for Aq= 1 (q-- 10s/~z). 

The ratio p/h was obtained by the use of equation 
(22) from the residuals for the molecular intensity 
curve; one set corresponds to Aq=0.2, two sets to 
Aq=0.4 (one set measured at q=  17.4, 17.8, 18-2, . . .  
and the other at the intermediate points, q=17.6, 
18.0~ . . . ) ,  three sets to Aq=0.6, and so on. A mean 

value is marked by a dot for each interval, and a 
smooth curve was drawn through the dots, as shown 
in Fig.2. It is reasonable thatp/h increases to 0.5 when 
the interval Aq decreases to zero, as is expected from 
equations (22) and (23). 

The standard deviations calculated from the fit of 
the molecular intensity curve by the application of the 
off-diagonal terms thus obtained are shown in Fig. 3 
for the atomic distances of the Si-CI and CI-C1 pairs. 
The mean amplitudes, l(Si-Cl) and I(CI-CI), and the 
indices of resolution, k(Si-Cl) and k(Cl-C1), were 

shown to have nearly the same trend. It should be em- 
phasized that, when the interval decreases to zero, the 
standard deviation for the most probable value does 
not approach to zero but remains finite when the cor- 
relation is properly taken into consideration. 

Optimum interval of measurements 

When the observations have correlations, a non-diag- 
onal weight matrix should be used in a least-squares 
fit. In that case, the standard deviation decreases with 
a decrease in the interval of measurements and con- 
verges to a certain minimum value, as shown in Fig. 3. 
Since the interval of measurements makes no problem 
if a proper non-diagonal matrix is used, the best estim- 
ate of the standard deviation can be obtained as the 
small-interval limit, O'min, in Fig. 3. However, this 
procedure requires laborious calculations even when 
the above mentioned 'simplified matrix' is assumed. It 
would therefore be practically advantageous if a diag- 
onal weight matrix could be used in the least-squares 
process as an effective substitute for the non-diagonal 
matrix. Evidently, the most probable values of the 
parameters are correctly estimated by this diagonal 
matrix. In order to derive a proper standard deviation, 
O'min, the interval of measurements may be chosen as 
Aqo in Fig. 3. It is also evident that the optimum inter- 
val thus obtained depends on the experimental con- 
ditions such as the camera distance; the magnifying 
ratio in the microphotometer tracing and the feature 
of the intensity curve. 

Let us again consider the case of silicon tetrachloride 
for a practical example. The standard deviations ob- 
tained by the application of the diagonal weight matrix 

, °  . • 

0 *" e ° ' ' J - ' ° ° " ' o  " 'e, , , , ,  * '° '°- ,  • ' " Og60 ~o 
• , • • 

q-18~97 z~ q-1 

Fig. 1. The residuals of  the least-squares fit (obs. -ca lc . ) ,  on an 
arbi t rary scale, for  the molecular intensity curve of  sil icon 
tetrachlor ide against q. 

P/h 

0"4 

0"2 

0 

0"2 . " 
P f I I 

2 4 6 8 ,~q 

Fig.2. The ratios of the off-diagonal term p to the diagonal 
term h for various intervals. The dots show empirical values 
obtained from the residuals. 



are illustrated in Fig. 3. Here a unit matrix is used for 
the weight matrix, because equation (13) will simply 
reduce to a unit matrix if the off-diagonal terms are 
put equal to zero. It is easily seen that the optimum 
intervals, Aqo, are about 1.0 and 0.8 in the q scale for 
the Si-C1 and CI-C1 atom pairs, respectively. This in- 
dicates that the interval Aq0 = 1 which has often been 
used in the analysis of the molecular intensity curves 
of SiCI4 and also of other molecules, has been an ap- 
propriate choice. 

Discussion 

O" 

1"5 

In the previous report on the analysis of silicon tetra- 
chloride, it was concluded, by comparing two kinds of 
standard deviations, o'1 and a2, that the interval of 
Aqo = 1 was suitable for the analysis (Morino & Murata, 
1965). The development described above now provides a 
more direct support for this interval. Even though the 
present treatment is a crude approximation, it is suf- 
ficient for the purpose of demonstrating the effect of 
correlation, because the standard deviation is not sen- 

1"0 

Aqo 
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1 2 3 4 A q  
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Fig.3. Standard deviations of the atomic distances of SiCI4 
obtained from the least-squares fit of a molecular intensity 
curve. Filled circles represent the outputs of the analysis in 
which the effect of correlation is taken into account. Open 
circles represent those for which the effect of correlation is 
ignored. Aq0 denotes the optimum interval when the diagonal 
weight matrix is assumed. 

sitive to the extent of the correlation, as shown in 
Fig. 3. The standard deviation for the most probable 
value estimated by using the rigorous weight matrix 
should be invariant under the change in the interval of 
measurements. In the present case, however, as can 
be seen from Fig. 3, the standard deviations for r(Si-C1) 
and r(C1-C1) depend slightly on Aq for smaller Aq. The 
same trend is also observed for other parameters. 
Hence, it would be better to introduce the second 
nearest neighbors in the off-diagonal weight matrix. In 
such a case the optimum interval might be given from 
the plateau of the curve instead of the minimum value, 
although the difference between obtained values would 
be very small. 

The interval, Aqo, for Si-C1 is found to be slightly 
larger than that for CI-C1. This may correspond to the 
fact that the period of the molecular intensity for Si-C1 
is larger than that for CI-C1 because of the longer C1-C1 
distance than that of Si-C1. 

The above discussion concerns the analysis of only 
one photographic plate. If the analysis is made for n 
plates, the random error becomes n-* times that de- 
rived from one curve. Therefore, as the number of 
curves analyzed increases, the random error decreases 
unlimitedly. It does not mean that the accuracy of the 
final result can be increased indefinitely: it is limited by 
the presence of systematic errors which have finite 
values depending on the experimental conditions. 

It is to be noted that a strong correlation may enter 
into the analysis if irregular readings of the intensity 
curve are smeared out. In order to show this effect, an 
observed molecular intensity curve was Fourier-trans- 
formed into a radial distribution curve and trans- 
formed back into a molecular intensity curve. As a 
result of such a double conversion, most of the irregular 
features in the original experimental readings disap- 
peared, and an apparently smooth curve was obtained. 
A strong correlation, however, was found in the 
smoothed curve since the p/h value became 0.435, in 
contrast to 0.140 of the original curve. This result gives 
a warning against an unduly small estimate of the 
standard deviation by smoothing out the observations 
in the course of the analysis, and by ignoring the effect 
of correlation among the observations. 

The authors are indebted to Professor J. Kakinoki 
and Drs T. Ino and K. Katada of Osaka City Univer- 
sity for their valuable criticism and advice. 
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